The Vegetable Garden

Why is compost special? - Compost Recipe

Do I Need a Recipe?

Microorganisms and other soil fauna work most efficiently when the ratio of carbon-rich to nitrogen-rich materials in your compost pile is approximately 25:1. In practical terms, if you want to have an active compost pile, you should include lots of high-carbon "brown" materials (such as straw, wood chips, or dry leaves) and a lesser amount of high-nitrogen "green" materials (such as grass clippings, freshly pulled weeds, or kitchen scraps).

If you have an excess of carbon-rich materials and not enough nitrogen-rich materials, your pile may take years to decompose (there is not enough protein for those microbes!). If your pile has too much nitrogen and not enough carbon, your pile will also decompose very slowly (not enough for the microbes to eat!), and it will probably be soggy and smelly along the way.

But don't worry about determining the exact carbon content of a material or achieving a precise 25:1 ratio. Composting doesn't need to be a competitive, goal-oriented task. All organic matter breaks down eventually, no matter what you do. If you simply use about 3 times as much "brown" materials as "green" materials, you'll be off to a great start. Take a look at the sample recipes and check the chart of common compost materials. With experience, you'll get a sense for what works best.

Compost gets hot
Heat is a by-product of intense microbial activity. It indicates that the microorganisms are munching on organic matter and converting it into finished compost. The temperature of your compost pile does not in itself affect the speed or efficiency of the decomposition process. But temperature does determine what types of microbes are active.

There are primarily three types of microbes that work to digest the materials in a compost pile. They each work best in a particular temperature range:

The psychrophiles work in cool temperatures -- even as low as 28 degrees F. As they begin to digest some of the carbon-rich materials, they give off heat, which causes the temperature in the pile to rise. When the pile warms to 60 to 70 degrees F, mesophilic bacteria take over. They are responsible for the majority of the decomposition work. If the mesophiles have enough carbon, nitrogen, air, and water, they work so hard that they raise the temperature in the pile to about 100 degrees F. At this point, thermophilic bacteria kick in. It is these bacteria that can raise the temperature high enough to sterilize the compost and kill disease-causing organisms and weed seeds. Three to five days of 155 degrees F. is enough for the thermophiles to do their best work.

Getting your compost pile "hot" (140 to 160 degrees F.) is not critical, but it does mean that your compost will be finished and usable within a month or so. These high temperatures also kill most weed seeds, as well as harmful pathogens that can cause disease problems. Most people don't bother charting the temperature curve in their compost pile. They just try to get a good ratio of carbon to nitrogen, keep the pile moist and well aerated, and wait until everything looks pretty well broken down. If you want to get a little more scientific about it, buy a compost thermometer.

Commercial activators can help raise the temperature in your compost pile by providing a concentrated dose of microorganisms and protein. Other effective activators that can help to get your pile cooking include humus-rich soil, rotted manure, finished compost, dried blood, and alfalfa meal.